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18 I. INTRODUCTION

19 Determining the microscopic spin parameters of paramag-
20 netic metals has historically been a process fraught with
21 complications and inaccuracies.? In general, the spin re-
22 sponse of an interacting fermionic system can be modified by
23 spin-orbit scattering processes, electron-phonon interactions,
24 and/or electron-electron interactions.>* These contributions
25 to the spin susceptibility themselves can be affected by
26 disorder,>® dimensionality,”® and the presence of interfaces.’
27 The two primary spin parameters for a paramagnetic system
28 are the spin-orbit scattering rate and the antisymmetric /=0
29 Landau parameter G°. The latter accounts for the renormal-
30 ization of the bare Pauli spin susceptibility due to electron-
31 phonon and electron-electron interactions. Depending upon
32 the sign of this parameter the effective spin moment can be
33 larger or smaller than the bare electron value. In practice, the
34 spin-orbit scattering rate can be obtained from the coherent
35 backscattering contributions to the magnetoresistance of
36 moderately disordered nonsuperconducting films or by par-
37 allel magnetic field studies of thin superconducting films.
38 The Fermi-liquid parameter G°, however, is more difficult to
39 determine accurately. In principle, it can be extracted from
40 low-temperature measurements of the spin susceptibility x
41 and the heat capacity y from which the respective corre-
42 sponding density of states N(y) and N(7y) are obtained. The
43 ratio of these densities of states is a direct measure of the
44 many-body renormalization, G°=N(7y)/N(x)-1.> Unfortu-
45 nately, orbital contributions to the susceptibility make it very
46 difficult to determine its spin component precisely in high-
47 conductivity systems and phonon contributions to the spe-
48 cific heat can introduce significant systematic errors in the
49 measurement of N(7y). In this report we address the determi-
50 nation of G° and the spin-orbit scattering rate via the Pauli-
51 limited, normal-state pairing resonance.'%"!?

52  If a paramagnetic system has a superconducting phase and
53 can be made into a thin-film form, then it is possible to
54 access the spin parameters through tunneling density-of-
55 states (DOS) measurements. A Zeeman splitting of the BCS
56 coherence peaks can be induced by applying a parallel mag-
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We present a quantitative analysis of the low-temperature, high parallel-field pairing resonance in ultrathin
superconducting Al films with dimensionless conductance g> 1. In this regime we derive an analytical expres-
sion for the tunneling density-of-states spectrum from which a variety of normal-state spin parameters can be
extracted. We show that by fitting tunneling data at several supercritical parallel magnetic fields we can
determine all of the relevant parameters that have traditionally been obtained via fits to tunneling data in the
superconducting phase. These include the spin-orbit scattering rate, the antisymmetric Landau parameter G,
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netic field to a film of thickness << £, where £ is the super-
conducting coherence length. Tedrow and Meservey pio-
neered the use of superconducting spin-resolved tunneling to
directly measure both spin-orbit scattering rate and the Lan-
dau parameter G° in thin Al and Ga films near the parallel
critical-field transition."'%!% This technique, however, cannot
access G* well into the superconducting phase since those
electrons responsible for the exchange effects are consumed
by the formation of the condensate.'® To circumvent this
limitation, one needs to measure the Zeeman splittings in
magnetic fields just below parallel critical field. However,
one cannot completely reach the normal-state quasiparticle
density in a thin film while remaining in the superconducting
phase since the spin-paramagnetically limited parallel 70
critical-field transition is first order. Because of this, one 71
must extrapolate the normal-state value of G° from data 72
taken in the superconducting phase. Alternatively, the films 73
can be made marginally thicker, which will suppress the 74
first-order transition,'® or the measurements can be made at 75
higher temperatures. But these strategies limit one to a very 76
narrow range of film thicknesses. Furthermore, in both cases 77
one is constrained to a very narrow range of applied fields. 78

Here we present a detailed analysis of the normal-state 79
pairing resonance (PR) from which the spin-orbit scattering 80
rate, orbital depairing parameter, and the Landau parameter 81
G° can be accurately obtained. We show that the technique 82
can be used over a wide range of film thicknesses and resis- 83
tances. Moreover, the measurements can be made in fields 84
well above the parallel critical field and in fields substantially 85
tilted away from parallel orientation.!”-!8 86

II. PAIRING RESONANCE IN PARALLEL FIELD 87

88
89

The PR is characterized, as any other resonance, by two
quantities: its position and its width. The former is given by!!

(1)

1
E =—(E,+Q),
+2(z ) %0

where 91
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2)

92 z
93 is the Zeeman energy renormalized by the Fermi-liquid pa-
94 rameter G°, Mg is the Bohr magneton, and

_
—AS

95 Q = \r’E%

3)
96 is the Cooper-pair energy with A, the zero-field, zero-
97 temperature gap of the corresponding superconducting
98 phase.

99  The width of the PR depends on the effective dimension-
100 ality of the sample and on the strength I' of pair-breaking
101 mechanisms other than the Zeeman splitting. If these are
102 absent, a nonperturbative approach is necessary (see Ref.
103 11), and for quasi-two-dimensional systems the width is

AG

W,=—%, 4
2= 120 (4)

104
105 where g=4mhv,D is the dimensionless conductance with D
106 the diffusion constant and v, the bare DOS. If W, <T" then a
107 perturbative calculation is sufficient to accurately estimate
108 the width, provided one properly takes into account the role
109 of the exclusion principle.'® For instance, in the case of a
110 tilted magnetic field, I" is proportional to the perpendicular
111 component of the field and the exclusion principle both shifts
112 and reshapes the PR. If we consider the effects of spin-orbit
113 scattering and the finite-thickness orbital contributions of the
114 parallel field,'” then

mll
—=b+c

,U«BH)2
=, 5
o, (5)

115 A,

116 where according to the notation commonly used to charac-
117 terize the DOS in the superconducting state,?”

fu

b= 6
118 37,4, ©)
119 is proportional to the spin-orbit scattering rate 1/ 7, and
De’rPA
c=—s (7)
120 8€ph

121 is the orbital depairing parameter, where ¢ is the film’s thick-
122 ness, e is the electron charge, and € is the mean-free path.
123 This latter parameter quantifies the strength of the orbital
124 effect of the field?! in relation to the Zeeman effect. The
125 Zeeman splitting is the dominant pair-breaking mechanism
126 for c< 1.

127 Following the procedure outlined in Ref. 18, we obtain
128 the zero-temperature correction to the (spin-down) DOS due
129 to the PR

AN
(e—E)>+T%

130 @®
131 where € is the energy measured from the Fermi level; the
132 other quantities entering this formula have been defined
133 above, see Egs. (1)—(5). The correction for the other spin
134 component is found by replacing e— —e€ in the right-hand
135 side of Eq. (8). The function
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1
A(e;E,T) = 7—T{arctan[(EZ — €)/I'] + arctan[ /] 136

+ arctan[ (e — Q)/I'] + arctan[ (2e — E)/T"]}
)

accounts for the exclusion principle and takes on values be-
tween 0 and 2. It alters the Lorentzian shape of the PR,
especially at energies close to the Fermi energy (i.e., e<E,) 140
and, in fact, A(e=0)=0. We note that Egs. (8) and (9) imply 141
that Sv/vy=2W,/I", which is consistent with the assumed 142
perturbative criterion I'> W,. 143

In this work we show that Eq. (8) gives a quantitative 144
description of the PR and that it enables us to extract from 145
normal-state measurements the physical quantities G, b, and 146
c. While they can be obtained from DOS measurements in 147
the superconducting state,'>¢ this requires to solve a set of 148
self-consistent equations for the order parameter and “mo- 149
lecular” magnetic field together with the Usadel equations 150
for the normal and anomalous Green’s functions—a much 151
more complicated task in comparison to the simple fitting of 152
the data that we describe in Sec. IV. 153

137

138
139

III. EXPERIMENTAL PROCEDURE 154

Aluminum films were grown by e-beam deposition of 155
99.999% Al stock onto fire-polished glass-microscope slides 156
held at 84 K. The depositions were made at a rate of 157
~0.1 nm/s in a typical vacuum P<3X 1077 Torr. A series 158
of films with thicknesses ranging from 2 to 2.9 nm had a 159
dimensionless normal-state conductance that ranged from g 160
=5.6 to 230 at 100 mK. After deposition, the films were 161
exposed to the atmosphere for 10-30 min in order to allow a 162
thin native oxide layer to form. Then a 9-nm-thick Al coun- 163
terelectrode was deposited onto the film with the oxide serv- 164
ing as the tunneling barrier. The counterelectrode had a par- 165
allel critical field of ~2.7 T due to its relatively large 166
thickness, which is to be compared with Hy~6 T for the 167
films. The junction area was about | mm X 1 mm, while the 168
junction resistance ranged from 10—100 k(), depending on 169
exposure time and other factors. Only junctions with resis- 170
tances much greater than that of the films were used. Mea- 171
surements of resistance and tunneling were carried out on an 172
Oxford dilution refrigerator using a standard ac four-probe 173
technique. Magnetic fields of up to 9 T were applied using a 174
superconducting solenoid. A mechanical rotator was em- 175
ployed to orient the sample in situ with a precision of ~0.1°. 176

IV. RESULTS AND DISCUSSION 177

178
179
180
181
182
183
184
185
186

We show in Fig. 1 the tunneling conductance measured at
70 mK and three supercritical parallel magnetic fields. This
particular film of dimensionless conductance g=157 was 2.6
nm thick and had a zero-field superconducting transition
temperature 7.=2.74 K. Common to the three data sets is
the Coulomb zero-bias anomaly (ZBA),?> which produces a
logarithmic depletion in the DOS at high biases; the loga-
rithm is cutoff at low bias by temperature. In order to isolate
the paramagnetic resonance, we need to remove the contri-
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FIG. 1. Tunneling conductance at 70 mK for three supercritical
parallel magnetic fields (solid lines). The dashed line is the fit to the
zero-bias anomaly due to Coulomb interaction. The arrows point to
the boundaries of the low- (|V|=<0.2 mV) and high-bias (|V]
= 1.4 mV) regions used for the fitting.

187 bution of the ZBA. To interpolate between the low- and high-
188 bias parts of the curves (as delimited by the arrows in Fig. 1),
189 we find the best-fit curve, restricted to these regions, given
190 by the sum of a background constant tunneling conductance
191 and Re W(1/2+iaV), where W is the digamma function and
192 « a fitting parameter. The result is the dashed curve in Fig. 1,
193 which is then subtracted from the measured tunneling con-
194 ductances.

195  In Fig. 2 we plot with a solid line the PR at 7 T obtained
196 as described above. As discussed in Sec. II, its position and
197 width are, respectively, determined by the Zeeman energy E,
198 and the pair-braking rate I" while the conductance g only
199 affects the overall magnitude. Using Eq. (8), the best fit to
200 the data is given by the dot-dashed curve; while the main
201 peak is well reproduced, a shoulder feature at higher bias is
202 underestimated. To our knowledge, there are two possible
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FIG. 2. Pairing resonance at 7 T (solid line) with the ZBA
subtracted off. The dot-dashed curve is the best fit to the data using
Eq. (8). The dashed curve is the best fit with a sum of Eq. (8) and a
Gaussian—see the text for more details on the fitting procedure.
The two terms of the sum are plotted separately as dotted curves.
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FIG. 3. Pairing resonances measured at 8 T (top) and 6 T (bot-
tom solid curve). The bottom curve is shifted down by 0.007 for
clarity. The dashed lines are best fits to the data obtained as de-
scribed in the text. The asymmetry of the PR and its suppression
near the Fermi energy are easily recognized in the data taken at 6 T.

causes for this discrepancy, namely, a finite bias, triplet chan- 203
nel anomaly,?> similar to the Coulomb ZBA but much 204
weaker, and finite-temperature effects.?? To take into account 205
these possible corrections, we add to Eq. (8) a Gaussian con- 206
tribution; to reduce the number of free parameters, we re- 207
quire it to be centered at the Zeeman energy, which is where 208
a triplet channel correction would be located, while the am- 209
plitude and width are used as fitting parameters. The best fit 210
thus found is the dashed line in Fig. 2; the peaked PR and 211
broad Gaussian contributions are plotted separately with dot- 212
ted lines. 213

We present in Fig. 3 two more PRs with the best-fit 214
curves. The asymmetric shape of the resonance and its sup- 215
pression near the Fermi energy are evident in the lowest-field 216
data. We note that fitting these data with Eq. (8) only would 217
require us to decrease the conductance with increasing field, 218
whereas we can use the same value of the conductance at all 219
fields when the Gaussian correction is included. Moreover, 220
the value of the Zeeman energy is only weakly affected by 221
the inclusion of this correction, with the change in E, smaller 222
than our estimated relative error of about 1%. While these 223
two observations support the validity of our approach, the 224
magnitude of the width parameter I" turns out to be more 225
sensitive to the Gaussian correction. However, its field de- 226
pendence (see Fig. 5) is robust and the quantitative estimates 227
discussed below are in line with expectations. 228

Having detailed our fitting procedure, we now consider 229
the physical quantities that can be extracted from the data. In 230
Fig. 4 we plot the normalized Zeeman energy as a function 231
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FIG. 4. Normalized Zeeman energy E,/ A, vs magnetic field H.
The solid line is the best fit to Eq. (2); the slope is proportional to
(1+G%~! and we estimate the value of the Fermi-liquid parameter
G%=0.26. For comparison, the dashed line represents the expected
linear relationship in the absence of Fermi-liquid renormalization.
Inset: same plot as the main figure but for a thicker film with G°
=(.24 (see text for details).

232 of the applied field. By fitting the data with Eq. (2) we find
233 G°=0.26; a similar estimate, G°=0.24, is obtained for a
234 thicker film with #=2.9 nm, g=230, and zero-field, zero-
235 temperature gap Ay=0.41 meV, see the inset of Fig. 4. We
236 note that a better fit to the data in Fig. 4 could be obtained by
237 allowing for a finite negative intercept; however, the large
238 estimated error on the intercept makes the best-fit line com-
239 patible with the expectation that it passes through the origin
240 [see Eq. (2)]. This finite intercept could be due to small
241 higher-order contributions since at the lowest field the pa-
242 rameter 2W,/I"=0.07 is only marginally smaller than 1. In
243 support to this interpretation, we find no evidence of finite
244 intercept for the thicker film for which 2W,/I'<0.016. Al-
245 ternatively, the intercept could be an additional indication,
246 together with the shoulder feature mentioned above, of
247 finite-temperature effects. We will further investigate this lat-
248 ter issue in a separate work.

249  The width parameter I is plotted in Fig. 5 as a function of
250 (upH/Ag)? together with the best-fit line. According to Eq.
251 (5), the intercept and the slope are determined by the spin-
252 orbit parameter b and orbital parameter c, respectively. We
253 estimate their values as b=0.06, in agreement with the re-
254 sults in the literature, and c¢==0.02, which favorably
255 compares’* with the value c¢=0.04 extrapolated from
256 superconducting-state measurements in marginally thick
257 (i.e., ¢=1) films. Repeating the analysis for the thicker
258 film—see the inset of Fig. 5—we find »=0.06 and c
259 =(.04. As a further check on the validity of the present
260 approach, for this film we show in Fig. 6 the measured and
261 calculated DOS in the normal and superconducting states for
262 fields of 5.6 and 4 T, respectively: all the main features of the
263 superconducting DOS are captured by the theoretical curve®
264 obtained by solving the Usadel and self-consistent
265 equations'> with the parameters found via the normal-state
266 measurements.
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FIG. 5. Normalized pair-breaking parameter I'/ A vs the square
of the reduced field. Using the linear relationship in Eq. (5) we
obtain from the best-fit line the spin-orbit scattering rate b==0.06
and the orbital effect parameter ¢=0.02. As in Fig. 4, we show in
the inset the data pertaining to the 2.9-nm-thick film.

In summary, we have presented a quantitative study of the 267
paramagnetic pairing resonance in parallel field. We have 268
derived an expression, Eq. (8), for the density of states which 269
takes into account spin-orbit scattering, orbital effect of the 270
magnetic field, and the Pauli exclusion principle. The latter is 271
responsible for the suppression of the resonance near the 272
Fermi energy, see Fig. 3 and the left panel of Fig. 6. By 273
fitting the PRs measured at different fields we have obtained 274
the values of the Fermi-liquid parameter G°, the spin-orbit 275
scattering rate b, and the orbital parameter ¢, thus showing 276
that normal-state experiments can provide the same informa- 277
tion usually extracted from the DOS of the superconducting 278
phase. Since the PR affects the spin-resolved DOS at oppo- 279
site biases, it can, in fact, be used to probe the electron-spin 280
polarization in magnetic films. The present work provides 281
the foundation for the analysis of tunneling studies of itiner- 282
ant magnetic systems via the PR.2° 283

0.0000

-0.0002 -

-0.0004 -

) 0
2 2
=) =]
£ -0.0006 |- £
& 2
© o

-0.0008 |

-0.0010 [

0.0012f

00 04 08 12 00 04 08 12 16
V(mv)

FIG. 6. Tunneling DOS in the normal (left, H=5.6 T) and su-
perconducting (right, H=4 T) states at 7=70 mK for a 2.9-nm-
thick film. Solid lines are experimental data; dashed lines have been
calculated with the parameters given in the text.
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